Wykład V KP i KPFM

Pomiar odbicia, transmisji, czułości spektralnej, EQE i IQE Bentham

Pomiar charakterystyk widmowych źródeł promieniowania i fotodetektorów przy pomocy detektora fazoczułego lock-in (nanowoltomierz homodynowy)

Tarcza modulatora. Wiązka światła jest w czasie T/4 odsłaniana i w takim samym czasie przysłaniana. Częstość modulacji zależy od częstości obrotów silnika i liczby skrzydełek wiatraczka. Dla 2 skrzydełek, f = $2f_{silnika}$.

Sygnał mierzony:

 $V_{sig}sin(\omega_s t + \theta_{sig})$

Sygnał referencyjny:

 $V_r \sin(\omega_r t + \theta_{ref})$

Sygnał na wyjściu lock-in'a:

 $sinasin\beta=1/2[cos(\alpha-\beta)-cos(\alpha+\beta)]$

$$V_{psd} = V_{sig}V_{r} sin(\omega_{s}t + \theta_{sig})sin(\omega_{r}t + \theta_{ref})$$

= 1/2 V_{sig}V_{r} cos([\omega_{s} - \omega_{r}]t + \theta_{sig} - \theta_{ref}) - 1/2 V_{sig}V_{r} cos([\omega_{s} + \omega_{r}]t + \theta_{sig} + \theta_{ref})

Lock-in

Filtr dolnoprzepustowy eliminuje sygnał o częstości $\omega_s + \omega_r$. Dla $\omega_r = \omega_s$ sygnał na wyjściu jest stały i największy dla różnicy faz równej zero.

$$V_{psd} = 1/2 V_{sig} V_{r} \cos(\theta_{sig} - \theta_{ref})$$

Ustalamy położenie pokrętła PHASE SHIFT (przesunięcie fazowe), aby sygnał był jak największy.

AFM cd - EFM

Kryształ TGS

• EFM

Ostrze pokryte warstwa przewodzącą jest wprawiane W drgania napięciem przemiennym o bliskiej częstości częstości System piezo rezonansowej. utrzymuje stałą odległość od próbki (lock-in wewnętrzny). Jednocześnie przykładane jest napięcie stałe V_{DC} . W trakcie skanowania zmienia się faza i amplituda drgań, które są mierzone przez lock-in zewnętrzny. Ten sygnał odwzorowuje potencjał powierzchniowy próbki.

EFM

modzie Praca W bezkontaktowym. Dźwignia oscyluje z częstością f. Do dźwigni przykładane jest napięcie przemienne V_{AC} o częstości w i napięcie stałe V_{DC} . W pętli sprzężenia zwrotnego znajduje się detektor fazoczuły - lock-in, który poprzez Z piezo kontroluje stałą odległość ostrza od powierzchni próbki. Sygnał na jego odwzorowuje wyjściu topografię próbki. Z kolei na wyjściu zewnętrznego lock-in'a otrzymuje sie sygnał EFM i gradient pojemności.

Częstość $\omega < f$ a więcobydwa sygnały niezakłócają się wzajemnie.

EFM i KPFM

Do pobudzania drgań ostrza stosuje się bimorf – czyli układ dwóch połączonych mechanicznie płytek piezoelektrycznych z metalowymi elektrodami. Przez elektrody doprowadzone jest napięcie przemienne, w taki sposób, aby odkształcenie płytek było przeciwne (np. rozszerzanie-kurczenie). W efekcie odkształcenie bimorfu jest znacznie większe niż odkształcenia jego składników.

EFM i KPFM - podsumowanie

• EFM

Mikroskop pracuje w modzie bezkontaktowym dynamicznym. Ostrze pokryte warstwą przewodzącą jest wprawiane w drgania napięciem przemiennym o częstości bliskiej częstości rezonansowej (f). System piezo utrzymuje stałą odległość od próbki (lock-in wewnętrzny). Jednocześnie przykładane jest napięcie przemienne V_{AC} o częstości $\omega < f$ i stałe V_{DC} . W trakcie skanowania zmienia się faza i amplituda drgań, które są mierzone przez lock-in zewnętrzny. Ten sygnał odwzorowuje potencjał powierzchniowy próbki.

• KPFM

J.w. ale przykładane jest napięcie stałe V_{DC} , które kompensuje kontaktową różnicę potencjału V_{CPD} . Jeśli nastąpi kompensacja, sygnał na wyjściu lock-in'a będzie równy zeru. Pomiar polega na utrzymaniu zerowego sygnału na wyjściu lock-in'a w pętli sprzężenia zwrotnego (DC bias control). Przykładane napięcie stałe zapewniające ten warunek odwzorowuje kontaktową różnicę potencjałów.

Kontaktowa różnica potencjałów (CPD)

(a) materiały są odizolowane, (b) materiały są połączone kontaktem elektrycznym, (c) materiały są połączone kontaktem elektrycznym i do obwodu wprowadzamy dodatkowe napięcie V_b które niweluje kontaktową różnicę potencjałów V_{CPD} .

$$V_{CPD} = -rac{ oldsymbol{\Phi}_{tip} - oldsymbol{\Phi}_{sample} }{e}$$

EFM

Do dźwigni przykładane jest napięcie przemienne V_{AC} . Zakładając, że układ próbka-ostrze można zamodelować kondensatorem płaskim o pojemności C:

$$F_{es}(z) = -\frac{1}{2}\Delta V^2 \frac{dC(z)}{dz} \qquad \Delta V = (V_{\rm S} - V_{\rm Ext}) + V_{\rm AC}\sin(\omega t)$$

$$F_{es}(z,t) = -\frac{1}{2} \frac{dC(z)}{dz} \left[(V_{\rm S} - V_{Ext}) + V_{AC} \sin(\omega t) \right]^2 \qquad F_{DC} = -\frac{\partial C(z)}{\partial Z} \left[\frac{1}{2} (V_{\rm S} - V_{Ext})^2 \right]$$

$$F_{\omega} = -\frac{\partial C(z)}{\partial Z} (V_{\rm S} - V_{Ext}) V_{AC} \sin(\omega t) \qquad F_{2\omega} = -\frac{\partial C(z)}{\partial Z} \frac{1}{4} V_{AC}^2 \left[\cos(2\omega t) - 1\right]$$

 V_S - potencjał powierzchniowy

Ugięcie dźwigni zależne jest od wszystkich członów równania $F_{es}(z, t)$. c) Sygnał o częstości 2ω zawiera informację o zmianie dC/dz, jeśli pomiar odbywa się przy d = const.

b) Sygnał o częstości ω zawiera informację o dC/dz i V_S , jeśli wyznaczono już dC/dz (z sygnału o częstości 2ω) - można określić V_S .

Kelvin Probe Force Microscope (KPFM)

KPFM

Znak V_{CPD} zależy od tego czy zewnętrzne napięcie jest przykładane do igły czy do próbki, ponieważ zmienia ich prace wyjścia.

Jeśli jest przykładane do próbki:

$$V_{CPD} = -\frac{\Phi_{tip} - \Phi_{sample}}{e}$$

$$V_{CPD}^{Sample} = \frac{\phi_{tip}}{-e} - \left(\frac{\phi_{Sample}}{-e} + V_{Ext}\right) = V_{CPD} - V_{Ext}$$

Jeśli jest przykładane do igły:

$$V_{CPD}^{Tip} = \left(\frac{\phi_{Tip}}{-e} + V_{Ext}\right) - \left(\frac{\phi_{Sample}}{-e}\right) = V_{CPD} + V_{Ext}$$

System SKP5050 firmy KPTechnology

Sonda Kelvina pozwala na bezkontaktowy, niedestrukcyjny pomiar różnicy pracy wyjścia (lub kontaktowej różnicy potencjału powierzchniowego dla niemetali, CPD) między przewodzącą próbką i drgającą igłą sondy. Podobnie jak w KPFM, metoda opiera się na utworzeniu kondensatora, którego jedną okładką jest badany materiał, a drugą okładką jest igła sondy. Różnica polega na sposobie wyznaczania kontaktowej różnicy potencjałów, CPD. Jest to metoda <u>off-null detection.</u>

Igła o średnicy 2mm pokryta stopem złota w modzie CPD drga z częstością 70Hz i amplitudą równą ok. 0.2mm w średniej odległości ok. 1mm od powierzchni próbki.

Idea metody KP

Wibrujące ostrze pobudzane jest do drgań (częstości akustyczne). Ostrze i próbka stanowią 2 płasko równoległe okładki kondensatora. Kiedy ostrze wibruje, w obwodzie elektrycznym zaczyna płynąć prąd przemienny.

$$V_{CPD} = -rac{oldsymbol{\Phi}_{tip} - oldsymbol{\Phi}_{sample}}{e}$$

Pojemność igła-próbka jest dana wzorem:

$$C_{\rm K}(t) = \frac{\epsilon_0 \epsilon_r A}{d(t)},$$

Odległość miedzy drgającą igłą i próbką (d_o – średnia odległość nieruchomej igły):

 $d(t) = d_0 + d_1 \sin(\omega t),$

Idea metody KP

Signal (volts)

W układzie mierzony jest prąd, ale sygnał jest przetwarzany na napięcie:

$$V_{ptp} \propto (V_{CPD} + V_b)C_0\omega \frac{d_1}{d_0}\sin(\omega t + \varphi)$$

- Dla $V_{CPD} = -V_b$, $V_{ptp} = 0$ metoda null-detection
- Zależność $V_{ptp} \sim V_b$ jest liniowa –metoda off-null detection

Z zależności $V_{ptp} \sim V_b$ można wyznaczyć metodą regresji kontaktową różnicę potencjałów dokładniej aniżeli z równości $V_{CPD} = -V_b$.

KP

- KP Kelvin probe wyznaczenie pracy wyjścia metali lub położenia poziomu Fermiego niemetali
- SPV Surface Photovoltage określenie typu przewodnictwa
- Surface Photovoltage Spectroscopy przerwa wzbroniona, położenie poziomów defektowych
- APS Ambient Pressure Photoemission Spectroscopy –krawędź
- pasma walencyjnego /HOMO

SPV – próbka jest oświetlana światłem z lampy halogenowej, mierzona jest różnica CPD przed i po oświetleniu SPS – próbka jest oświetlana światłem monochromatycznym; zdejmowana jest zależność CPD od długości fali

Stany powierzchniowe

W typie p na powierzchni gromadzą się ładunki dodatnie, w typie n – na powierzchni gromadzą się ładunki ujemne.

Chem. Rev. 2012, 112, 5520-5551

W typie p potencjał V_S jest dodatni (na powierzchni gromadzą się ładunki dodatnie) w typie n – ujemny (na powierzchni gromadzą się ładunki ujemne).

Elektrony poruszają się do powierzchni, dziury - do wnętrza. Zagięcie pasm maleje i pojawia się sygnał SPV. Kiedy $E_{ph} = E_g$, sygnał SPV jest największy i ujemny w typie p. Elektrony poruszają się do wnętrza, dziury - do powierzchni. Zagięcie pasm maleje i pojawia się sygnał SPV. Kiedy $E_{ph} = E_g$, sygnał SPV jest największy i dodatni w typie n.

Światło o energii $E_{ph} > E_g$ powoduje zmniejszenie zagięcia i SPV rośnie. Kiedy zagięcie jest związane ze stanami powierzchniowymi, znak SPV mówi , czy mamy do czynienia z półprzewodnikiem typu p czy n.

Quantitative Analysis of Kelvin Probe Force Microscopy on Semiconductors, Chapter *in* Springer Series in Surface Sciences · January 2018, DOI: 10.1007/978-3-319-75687-5_9

SPV

Figure 6. Left: Surface band bending in dark (solid lines) and under illumination (dashed lines) of the conduction band edge in n-type (up) and p-type (down) semiconductors under depletion; Right: Surface potential as a function of time in the case of n-type and p-type semiconductor compared to the light excitation pulses in the ideal case where no phase delay exists.

Donchev, Mater. Res. Express 6 (2019) 103001

SPV i złącze p-n

Próbka GaN typu n (as grown). Domieszkowanie na typ p (GaN:Mg) do 400nm.

- Przejście elektronu z poziomu E_T do pasma przewodnictwa zarówno w typie p jak i n skutkuje zmniejszeniem zagięcia pasm co powoduje odpowiednio wzrost i spadek sygnału SPV.
- Natomiast przejście elektronu z pasma walencyjnego na poziom E_T spowoduje odwrotny efekt (większe zagięcie pasm). W efekcie sygnał SPV odpowiednio zmniejszy się w typie p i wzrośnie w typie n.

SPS

SPS i poziomy defektowe

Dodatnie nachylenie sygnału SPV w półprzewodniku typu p odpowiada przejściu elektronu z E_T do p. przewodnictwa. Ujemne nachylenie – przejściu el. z pasma walencyjnego do poziomu E_T

Idealne widmo SPV dla półprzewodnika typu p.

Semiconductors and Semimetals, Volume 91 ISSN 0080-8784 http://dx.doi.org/10.1016/bs.semsem.2014.11.004

Fotony wybijają elektrony z powierzchni próbki, jeśli ich energia jest równa co najmniej energii krawędzi pasma walencyjnego lub poziomowi HOMO. Aby mierzyć prąd fotoelektronowy konieczna jest próżnia, bo droga swobodna elektronów w powietrzu jest rzędu $1\mu m$. Jeśli pomiar prowadzi się w normalnych warunkach, elektrony jonizują ujemnie powietrze w pobliżu próbki – powstają jony O_2^- , $OH^-iN_2^-$. Jony ujemne podażają do igły naładowanej dodatnio – ich droga swobodna jest na tyle duża, że docierają do igły i płynie prąd. Napięcie na wyjściu konwertera jest proporcjonalne do $\sqrt[3]{E_{ph}} - \Phi_s$.

APS dla CH_3NH_3 Pb I_3 na podłożu FTO

Probing the energy levels of perovskite solar cells via Kelvin probe and UV ambient pressure photoemission spectroscopy;

J. R. Harwell, ^a T. K. Baikie, ^{ab} I. D. Baikie, ^b J. L. Payne, ^c C. Ni, ^c J. T. S. Irvine, ^c G. A. Turnbull*^a and I. D. W. Samuel*^a

DOI: 10.1039/c6cp02446g

SKP5050

Układ umożliwia pracę w trybie skanowania z rozdzielczością równą średnicy igły (standardowo – 2mm).

Rozdzielczość x-y - 0.317µm

Pomiar odbicia, transmisji, czułości spektralnej, EQE i IQE

Bentham

Nanowoltomierz lock-in

Bentham PVE300

Responsivity External Quantum Efficiency (EQE), Reflectance: total and diffuse Internal Quantum Efficiency (IQE),

Pomiar EQE

$$EQE(\lambda) = \frac{I_{ph}(\lambda)}{\varphi(\lambda)q}$$
$$\varphi_{ph}(\lambda) = \frac{I_{ph}^{ref}(\lambda)}{EQE^{ref}(\lambda)q}$$
$$EQE(\lambda) = EQE^{ref}(\lambda)\frac{I_{ph}(\lambda)}{I_{ph}^{ref}(\lambda)}$$

EQE z polaryzacją

• Napięciem

W kierunku przewodzenia – wzrost prądu dyfuzyjnego – spadek EQE W kierunku zaporowym – wzrost prądu unoszenia – nośniki szybciej docierają do elektrod - wzrost EQE

• Oświetleniem

Ma na celu pomiar EQE w warunkach symulowanego oświetlenia światłem słonecznym

Kierunek przewodzenia

TU DELFT

Współczynnik transmisji

Natężenie wiązki na głębokości z: $I(z) = I_0(1-R)e^{-\alpha z}$

Natężenie światła, które zostało zaabsorbowane:

$$I_A = I_0(1-R) - I_0(1-R)e^{-\alpha z} = I_0(1-R)(1-e^{-\alpha z})$$

Jeśli uwzględnić współczynnik odbicia od tylnej ścianki:

$$I_T = I_0(1-R)^2 e^{-\alpha z}$$
 \longrightarrow $T = \frac{I_T}{I_0} = (1-R)^2 e^{-\alpha z}$

 I_0 mierzymy detektorem kalibrowanym

Transmittance, Reflectance, Responsivity, EQE, IQE

A

п

Prawo Lamberta-Beera:

$$I(z) = I_0 e^{-\alpha z}$$

Przy założeniu, że współczynnik odbicia R od przedniej i tylnej ścianki jest taki sam przy przejściu przez ośrodek o grubości z, współczynnik transmisji T jest równy:

$$T=\frac{I_T}{I_0}=(1-R)^2 e^{-\alpha z}$$

$$Resp(\lambda) = \frac{I_f}{P_{\lambda}} [\frac{A}{Wnm}]$$
$$Resp(\lambda) = \frac{q\lambda}{hc} EQE(\lambda) [\frac{A}{Wnm}]$$
$$Resp = \frac{\lambda(nm)}{1240} EQE$$

 I_{f}

Po uwzględnieniu odbicia

$$IQE = \frac{EQE}{1-R}$$

Straty EQE

Fale krótkie – fotony są absorbowane zanim dotrą do warstwy absorbera.

Fale długie – głębokość penetracji jest większa od grubości absorbera. Fotony opuszczają absorber zanim zostaną zaabsorbowane.

Jak wyznaczyć prąd zwarcia z EQE ?

Pomiar odbicia - kula całkująca

Port SPIN/SPEX

specular included – całkowite odbicie, lustrzane i dyfuzyjne. Do portu mocowana jest biała płytka. specular excluded – odbicie dyfuzyjne. Do portu mocowana jest płytka pochłaniająca światło.

Odbicie dyfuzyjne

SCIENTIFIC REPORTS | (2018) 8:9607 | DOI:10.1038/s41598-018-28045-1

$$(h\nu F_{\rm KM}[R_d(h\nu)])^{1/n} = A(h\nu - E_g)$$

Odbicie dyfuzyjne

Figure 2. (A) Absorption spectra of CdSe QDs dispersions in water and (B) diffuse reflectance spectra of CdSe QDs films. QD diameters obtained by the Weller approach are shown in the legend⁵³ and in Table 1 together with other photophysical data.

$$F_{\rm KM}[R_d(h\nu)] = \frac{\left[1 - R_d(h\nu)\right]^2}{2R_d(h\nu)} = \frac{\alpha(h\nu)}{S}$$

$$(h\nu F_{\rm KM}[R_d(h\nu)])^{1/n} = A(h\nu - E_g)$$

DOI: 10.1021/acs.jpclett.6b01569 J. Phys. Chem. Lett. 2016, 7, 3335–3340